moisturgings bone tooks m

Set No. 1

Question Booklet No. 00278

15P/297/4

Serial No. of	OMR Answer Sheet	
Roll No. (Wri	ite the digits in words)	
Roll No.		
	(To be filled up by the candidate by blue/black	: ball-point pen)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages : 40 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: $2\frac{1}{2}$ Hours

Full Marks: 450

समय : $2\frac{1}{2}$ घण्टे

पूर्णाङ्कः : 450

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न **3 (ती**न) अंकों का है। *प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा।* प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक *शून्य* होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. Which of the following pair (A, B) of events is mutually exclusive, in the random experiment of tossing of a coin four times?
 - (1) A: Obtaining at least two heads, B: Obtaining at most two tails.
 - (2) A: Obtaining at least two heads, B: Obtaining at least two tails.
 - (3) A: Obtaining at least three heads, B: Obtaining at most three tails.
 - (4) A: Obtaining at least three heads, B: Obtaining at least three tails.

- 2. There are five applicants for a job. The applicants are ranked from best to the worst but it is unknown to the employer. He randomly selects two applicants. Which of the following has higher probability of selection than others, if selected candidates consist of:
 - (1) The worst and-one of the two best.
 - (2) At least one of the two best.
 - (3) Best and one of the two worst.
 - (4) None of the two best.
- Read the following statements:
 - S1: Classical definition of probability sometimes fails to provide the measure of probability even when the sample space (space of outcomes) is discrete and finite.
 - S2: Statistical definition only provides a frequentist's interpretation of probability.

Choose the most appropriate answer from the following codes:

- (1) Both S1 and S2 are correct.
- (2) S1 is correct but S2 is incorrect.
- (3) S1 is incorrect but S2 is correct.
- (4) Neither S1 nor S2 are correct.
- 4. An unbiased coin is tossed until a head is obtained or the total number of tosses becomes 7. An event 'A' is defined as' The coin is tossed at least 3 times'. In this context read the following statements carefully:
 - Sl: The total number of mutually exclusive and exhaustive outcomes is 8.
 - S2: The number of outcomes favourable to the event A is 3.

Choose the correct answer from the following codes:

- (1) Both S1 and S2 are correct.
- (2) S1 is correct but S2 is incorrect.
- (3) S1 is incorrect but S2 is correct.
- (4) Neither S1 nor S2 are correct.

An unbiased coin is tossed until a head is obtained or the total number 5. of tosses becomes 7. An event 'A' is defined as' The coin is tossed at least 3 times'. In this context read the following statements carefully:

SI: The number of outcomes favourable to the event A is 5.

S2: The probability of happening of the event A is 5/8.

Choose the correct answer from the following codes:

- (1) Both S1 and S2 are correct.
- (2) S1 is correct but S2 is incorrect.
- (3) S1 is incorrect but S2 is correct.
- (4) Neither S1 nor S2 are correct.
- In an examination the percentage of male and female candidates are 6. 60 and 40 respectively. If 80 percent of the students have passed the examination, the percentage of females passing the examination is at least:
 - (1) 20 percent. (2) 50 percent. (3) 80 percent. (4) 100 percent.
- In an examination the percentage of male and female candidates are 7. 60 and 40 respectively. It is known that 80 percent of the students have passed the examination. Then the least percentage of males passing the examination is:
 - (1) More than the least percentage of females passing the examination.
 - (2) Less than the least percentage of females passing the examination.
 - (3) Equal to the least percentage of females passing the examination.
 - (4) Not to comparable the least percentage of females passing the examination, on the basic of the given data only.
- In a university the male and female students' ratio is 2:3. Half of the male and one third of the female students are non-vegetarian. If a 8. student is selected at random and found to be non-vegetarian, the probability of its being female is:

5

(1) 1/2

(2) - 1/3

(3) Less than 1/3

(4) More than 1/2

There are three bags, each containing 12 white and 8 black balls. One 9. ball is drawn from first bag and placed in the second bag. Then a ball is drawn from the second and placed in the third bag. A ball is then drawn from the third bag. The probability that the ball drawn is white is:

(1) 12/21

 $(2) \quad 13/21$

(3) 12/20

(4) = 13/20

10. A and B are two events. \bar{A} and \bar{B} denote the compliment of A and B respectively. The evente denotes the happening of exactly one out of A and B

S1: $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

S2: $C = (A \cup B) \cap (\overline{A} \cup \overline{B})$

S3: $P(C) = P(A) + P(B) - 2P(A \cap B)$

(1) Only S1 and S2 are true. (2) Only S2 and S3 are true.

(3) Only S1 and S3 are true. (4) Sl, S2 and S3 all are true

11. Five sticks of length 1, 3, 5, 7 and 9 meters are given. Three are selected at random. The probability that selected sticks can form a triangle is :

(1) - 1/10

 $(2) \quad 2/10$

(3) 3/10

(4) 4/10

12. In a multiple choice test, an examinee either knows the answer with probability p or guesses it with probability 1-p. The probability of answering the question correctly is 1, if he knows the answer and 1/ m if he guesses the answer. An examinee answer a question correctly, then the probability that he really knows the answer is:

(1) mp/(1+mp).

(2) mp/[1+(m-l)p].

(3) (m-1)p/(1+mp).

(4) (m-1)p/[1+m-1)p.

13. Three rooms in a hostel are vacant. Three students were asked to submit their preferences for room allotment. Probability that all the three gave the same room as their first preference is:

(1) - 1/27

(2) 19/27

(3) 15/27

(4) - 3/27

14. Two friends X and Y decide to meet at the gate of a hotel for dinner between 20:30 hours and 21:30 hours. They further decide to wait for the other not more than fifteen minutes or beyond the meeting time. Define the events as follows:

A: They had the dinner together, B: X arrives before Y. C: Y arrives before X. Which of the following statements are true?

SI: B and C are equally likely.

S2: B given A and C given A are equally likely.

S3: A given B and A given C are equally likely.

Choose the answer from the following codes:

(1) Only S1 is true.

(2) Only S2 and S3 are true.

(3) Only S1 and S3 are true.

(4) Sl, S2 and S3 all are true.

15. $\{X_n\}$ is a sequence of identically and independently distributed random variables with finite fourth central moment. Then the sequence $\{X_n\}$

- (1) Obeys weak law of large numbers only.
- (2) Obeys strong law of large numbers only.
- (3) Obeys both weak law and strong law of large numbers.
- (4) May or may not obey any law of large numbers.

P.T.O.

- **16.** $\{X_n\}$ is a sequence of identically and independently distributed random variables with finite second central moment only. Then the sequence $\{X_n\}$
 - (1) Always obeys weak law of large numbers only.
 - (2) Always obeys strong law of large numbers only.
 - (3) May obey weak law of large numbers but never strong law of large numbers.
 - (4) May obey strong law of large numbers but never weak law of large numbers.
- 17. The heights (in nearest centimeters) of a sample of ten people are: 67 73 70 60 67 66 68 71 70 67. Which of the following columns (out of (a), (b) and (c)) show the correct class limits?

Frequency	(a)	(b)	(c)
1	60.5-63.5	60-62	59.5-62.5
0	63.5-66.5	63-65	62.5-65.5
5	66.5-69.5	66-68	65.5-68.5
3	69.5-72.5	69-71	68.5-71.5
1	72.5-75.5	72-74	71.5-74.5
	(a) and (b) (a) and (c)		(b) and (c) hree columns.

- 18. Prof Rajesh's biology class had a standard deviation of 2.4 on a standardized test, while Prof Mahesh's biology had a standard deviation of 1.2 on the same test. What can be said about these two classes?
 - (1) Prof. Rajesh's class is more homogeneous than Prof. Mahesh's.
 - (2) Prof. Mahesh's class is less heterogeneous than Prof. Rajesh's.
 - (3) Prof. Mahesh's class did less well on the test than Prof. Rajesh's.
 - (4) Prof. Rajesh's class performed twice as well on the test as Prof. Mahesh's.

19.	In a	frequency distribution of 25 the median as 65. The distri	0 scc butic	ores, the mean is reported as 78
		Positively skewed.	(2)	The contract of the contract o
		Binomial.	(4)	77.0 A.
	1.7			
20.	The	measure of central tendency he higher or lower end of a d	whi istrib	ch is sensitive to extreme scores oution is
		Median.	(2)	Mean.
		Mode.	52	all of the above
	(O)	mode.	180 /	
21.	The	statistic defined as the dista	ançe	between 70th sample percentile
	and	30th sample percentile gives	sus	the information concerning
	(1)	Central tendency		Dispersion
	(3)	Skewness	(4)	Kurtosis
				of a distribution will:
22.	Inc	reasing the frequencies in the	e tan	is of a distribution with
	(1)	Reduce the standard deviat		
	(2)	Not affect the standard devi	atior	1.
	(3)	Increase the standard devia	tion.	long on the increases are
	(4)	Not affect the standard de balanced on each side of th	e me	on as long as the increases are an.
23	syr	-t distribution unth S	core: e sai	cores 50 yields a bell-shaped s ranging from 5 to 48 on a large me test is administered to class V is expected to be?
	(1)			
	(2)		•	
	(3)			
	(4)	Symmetrical and bath tub	shaj	oe.

9 P.T.O.

person

25.	In	designing an	expe	riment, bl	ockin	g is used				
	(1)	To reduce	bias			9 w				
	(2)	To reduce	variat	ion						
	(3)	As a subst:	itute i	for a contr	ol gro	up.				
		As a first s				52 -5 2				
26.	Wh	ich of the fol	lowin	g are true!	>					
	 I: Blocking is to design of experiment as stratification is to sampling design. 									
	II:	By controlli can make c	ng cei onelu	rtain varia sions mon	bles,	blocking ir	design	of experiment		
	III:	The paired					case of h	locking		
	Cho	ose your an:	swer	from the fo	llowi	ng codes		nothing.		
							(4)	l, II, and III.		
27.	Sim; quad	psons 1/3 re drature form	d rule ula. F	e is obtaine	ed by above	taking n = blank fron	= i n one of	n the general the following:		
	(1)		(2) 2		(3)		(4)			

10

24. A percentile score of 40 in a test of total marks of 300, indicates that a

(4) Has earned a score equal to or better than 40% of the persons who

(1) Answered 40% of the questions correctly of that test.

(2) Knows 40% of the total topics covered in the test.

(3) Has earned a score equal to or more than 120.

appeared in the test.

	(3)	Iconic mode	1	(4)	Descript	ive model	
29.		a 2 ³ - factorial jiven by	experiment	Under u	sual nota	tion, the e	ffect total [A]
	(1)	(1)+(a)-(b)+(a	ab)+(c)+(ac)-(bc)+{abc)		
	(2)	-(1)-(a)-(b)-(a	ab)+(c)+(ac)+	(bc)+(abo	c}		
	(3)	-(1)+(a)-(b)+	(ab)-(c)+(ac)-	(bc)+(ab	e)		
	(4)	-(1)-(a)-(b)+	(ab)+(c)+(ac)-	(bc)+(ab	c }		
30.		E(x) = 0 and V will be:	/(x) = 2 then	for any (C >0, the	u pp er bou	nd for P{ x ≥
			(2) $\frac{2}{e^{2}}$	(3)	$\frac{e^2}{4}$	(4)	$\frac{c^2}{2}$
31	. If	X is a Poissor	n variate with	n param	eter 3, the	en E(X²) wi	ill be :
) 3	(2) 9		(3) 12		27
32		μ, is the r th c		nt of X a	nd Y = a -	bX where	b≠0, then r th
) μ _c	(2) a + b µ	(3) Եր,	(4)	$b^r \mu_r$
				11			P.T.O.

28. Operations Research approach is typically based on the use of

(1) Physical model (2) Mathematical model

33. If the probability density function of X is

$$f(x) = \frac{1}{\pi(1+x^2)}; \quad (-\infty < x < \infty$$

what is the distribution X2:

- (1) N(0,1) distribution (2) t(1) distribution
- (3) x² distribution;
- (4) F(1,1) distribution

34. Variance of t- distribution with n degree of freedom is finite when:

- $(1) \quad n = 1$
- (2) $1 \le n < \infty$ (3) $1 \le n < \infty$ (4) $n \ge 3$

35. A rod of length "b" is broken into three parts at random. What is the probability that a triangle can be formed from the parts?

- (1) \mathcal{V}_{1}
- (2) 1/8
- (3) 1/64
- (4) 1/32

36. Which of the following conditions are necessary for a series to be classifiable as a weakly stationary process?

- (i) It must have a constant mean
- (ii) It must have a constant variance
- (iii) It must have constant auto-covariances for given lags
- (iv) It must have a constant probability distribution

Choose your answer the following codes:

(1) (ii) and (iv) only

- (2) (i) and (iii) only
- (3) (i), (ii), and (iii) only
- (4) (i), (ii), (iii) and (iv)

37.	In monitoring a phone call you classify the call as a voice call (V) if
	someone is speaking, otherwise a data call (D) if the call is carrying a
	modem or fax signal. Classify the call as long (L) if the call lasts for
	more than three minutes; otherwise classify the call as brief (B). Use
	the probability model: $P[V] = 0.7$, $P[L] = 0.6$, $P[V \cap L] = 0.35$. The
	probability P[D L] is then closest to:

(1) 0.65

 $(2) \quad 0.42$

(3) 0.38

(4) 0.35

38. A student is selected from a class, consisting of 80% male and 20% female, radomly. A question was given to the selected candidate to solve it. The probability that it will be solved correctly is 0.15 is the selected candidate is male and 0.25 if the selected candidate is famale. Finally it was noted that the question was solved correctly, then the probability that the selected candidate was male is closest to:

(1) = 0.86

(2) 0.70

(3) 0.125

(4) 0.12

39. A random experiment consists of tossing of three fair (6-sided) die number (X, Y, Z) facing up. P(min (X, Y, Z) < 4) is closest to:

(1) 7/8

(2) 19/27 (3) 26/27

(4) 1/8

40. Let U_1 , U_2 , U_3 be independent identically distributed standard normal variables. If $X = U_1$, $Y = U_1 + U_2$ and $Z = U_1 + U_2 + U_3$, the Cov (Y, Z) is closest to:

(1) 1

(2) 2

(3) 3

(4) 4

41. The joint CDF of a pair of random variables X = (X, Y) is given by:

$$F_{x}(x,y) = \begin{cases} 0 & x < 0, y < 0 \\ xy & 1 \ge x \ge 0, 1 \ge y \ge 0 \\ x & 1 \ge x \ge 0, y > 1 \end{cases}$$
$$\begin{cases} y & x > 1, 1 \ge y \ge 0 \\ 1 & x \ge 1, y \ge 1 \end{cases}$$

The probability that the Max $(X, Y) \le 0.6$ is closest to:

- (1) 0.36
- $(2) \quad 0.5$
- (3) 0.8
- (4) 0.4
- 42. A quiz consists of 100 multiple choice questions, each with five possible answers, only one of which is correct. If the student guesses on each question, then the average number of questions answered incorrectly by the student is
 - [1] 50
- $\{2\}$ 60
- (3) 20
- (4) 80
- 43. In the past, the mean running time for a certain type of radio battery has been 9.6 hours. The manufacturer has introduced a change in the production method and wants to perform a test of hypothesis to determine whether the mean running time has changed as a result. The null (H0) and alternative (H1) hypotheses should be
 - (1) $H0: \mu = 9.6 \text{ hours}; H1: \mu < 9.6 \text{ hours}$
 - (2) $H0: \mu = 9.6 \text{ hours}; H1: \mu > 9.6 \text{ hours}$
 - (3) $H0: \mu = 9.6 \text{ hours}; H1: \mu \neq 9.6 \text{ hours}$
 - (4) any one of the above
- 44. There are two coins A and B. The probability of getting head on A is 0.4 and on B is 0.6. An experiment is designed to toss each coin 100 times and record the total number of heads (X) obtained in these 200 tosses. If the experiment is repeated 5000 times. The mean and variance of the X would be
- (1) 100, 24 (2) 200, 24 (3) 200, 48
- (4) 100, 48

- **45.** Let $X_1, X_2, ..., X_n$ be I I D standerd normal variables and let $T_n = (x_1^2 + x_2^2 + ... + x_n^2)/n$
 - (1) The limiting distribution of T_n -1 is Chi-square with 1 degree of freedom.
 - (2) The limiting distribution of $On(T_n 1)$ is Chi-square with 1 degree of freedom.
 - (3) The limiting distribution of $On(T_n 1)$ is normal with mean zero and variance 2.
 - (4) The limiting distribution of $(T_n 1)$ On is N(0, var = 2).
- **46.** Two persons, A and B draw random samples of sizes 15 and 20, respectively from normal populations with unknown mean and unknown variances. They wish to test that the mean of the population from which samples have been selected is equal 2 against the hypothesis that it is greater than 2. Interestingly they found that the sample mean and sample standard deviation of their samples were equal say m and s respectively. Both of them used the usual t-test and calculated the p-value which was obtained by A as P_A and by B as p_B. Then
 - (1) $P_A > p_B$ if s > 1 and $p_A < p_B$ if s < 1 (2) $p_A = p_B$
 - (3) $p_A < p_B$ (4) $P_A > p_B$
- 47. What does the total sum of squares in the regression analysis describes?
 - Unexplained variability in the response variable.
 - (2) Explained variability in the response variable.
 - (3) Total variability in the independent variable.
 - (4) Total variability in the response variable.

48. At a stop sign, some drivers come to a full stop, some come to a 'rolling stop' (not a full stop, but slow down), and some do not stop at all. We would like to test if there is an association between gender and type of stop (full, rolling, or no stop). We collected data by standing a few feet from a stop sign and taking note of type of stop and the gender of the driver. Below is a contingency table, summarizing the data we collected.

		Gen	der
		Male	Female
	Full Stop	6	6
Stop	Rolling stop	16	15
	No stop	4	3


If gender is not associated with type of stop, what percentage of males do we expect who do not stop at all? Choose the closest answer from the following codes:

- (1) 14 (2) 3 (3) 6 (4) 33.6
- **49.** Which of the following is most useful for checking the equal variance across groups for ANOVA?
 - Side-by-side box plots showing roughly equally sized boxes for each group.
 - (2) Histograms suggesting nearly normal distributions of data in each group.
 - (3) Summary statistics suggesting that the means of each group are roughly equal.
 - (4) Summary statistics suggesting roughly equal ranges for each group.

50. A study compared five different methods for teaching descriptive statistics. The five methods were traditional lecture and discussion, programmed textbook instruction, programmed text with lectures computer instruction and computer instruction with lectures. 45 students were randomly assigned, 9 to each method. After completing the course, students took a 1-hour exam. Which of the following is the correct degrees of freedom for an F-test for evaluating if the average test scores are different for the different teaching methods?

- (1) (5, 45)
- (2) (5, 44)
- (3) (4, 44)
- (4) (4, 40)

51. The figure given below shows three t-distribution curves. Which curve has the highest degree of freedom?

- (1) Solid
- (2) Dashed
- (3) Dotted
- (4) None of these

52. To investigate the difference in brain sizes between the citizens of two countries, random samples of brain sizes from both countries were collected. At the 5% significance level the study failed to reject the null hypothesis that the citizens of the two countries have (on average) brains of equal size. Which of the following is then true regarding a 99% confidence interval for the difference in brain sizes?

- (1) The interval should always contain 0.
- (2) The interval should never contain 0.
- (3) Without more information, it is impossible to tell whether the interval contains 0 or not
- (4) 99% confidence interval for the difference in brain sizes can not be constructed.

17 P.T.O.

53. Read the following statements carefully in context of the function given below :

F(x) = 0, if x<0

= $3c^2$, if $0 \le x < 1$

= $4c-7c^2$, if $1 \le x \le 2$

 $= 9c-7c^2-1$, if 2 < x < 3

= 1 . if 3<x.

Assertion(A): F(x) can be cumulative distribution function of a continuous positive random variable for properly chosen value of 'c',

Reason(R): For proper choice of 'c', F(x) is monotone and bounded between 0 and 1. Select your answer from the following codes:

- (1) Both A and R is true and R is correct explanation of A.
- (2) Both A and R is true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A is false but R is true
- 54. A non-negative integer valued random variable takes value k with probability proportional to a^k (0<a<1) and F(x) denotes its cumulative distribution function, then F(1) is equal to

(1) a

(2) 1-a

(3) a(1-a) (4) $1-a^2$

55. The probability mass function of a random variable X is given below:

 $f(\mathbf{x}) = \mathbf{x}/15;$ x = 1, 2, 3, 4, 5

> = 0;otherwise

Then the conditional probability that X lies between $^1/_2$ and 5/2 given that X is greater than 1 is

(1) - 1/7

(2) - 3/7

(3) 2/15

(4) 1/5

56. The marks obtained by a group of students are available in two examinations. First one was held before an extensive coaching and second one after the coaching. It is known that marks are normally distributed. Even then

Statement(S): We should use sign test in place of paired t-test.

Reason(R): Sign test is more powerful than paired t-test.

- (1) S is true and R is its correct explanation.
- (2) S is true but R is not its correct explanation.
- (3) S is false but R is true.
- (4) Both S and R are false
- **57.** Consider the problem of test of goodness of fit and choose the best from the following in this context:
 - (1) Kolmogrov-Smirnov (K-S) test is the only non parametric test.
 - (2) There exists no parametric test if measurements are nominal.
 - (3) Chi-square test is an alternative to K-S test.
 - (4) Chi-square test is more powerful than K-S test.
- 58. An exhaustive list of all members of the population along with their identification particulars is called
 - (1) Sampling design.
- (2) Sampling frame.
- (3) Population design.
- (4) Popuation frame
- 59. The t-distribution with one degree of freedom is equivalent to:
 - (1) Cauchy's distribution.
 - (2) Beta distribution on of first kind.
 - (3) Beta distribution of second kind.
 - (4) Normal distribution.

	ro	ws and 3 colu	mns,	The degrees	of fi	eedon	n for the e	error	mean	Souares
	is									
	(1)	11	(2)	8		(3)	6		(4)	3
61.	sin tha at	sample of siz aple random s at the unit bea 20 the draw i	samp aring s	ling without serial numb	rep	lacem	ent meth	od. Th	ie pro	obability
	(1)	.001	(2)	.04	(3)	.020	E	(4)	.025	
62.	(1)	sample surve Only sampli	ing e	ror.	ol th	e follo	wing to i	ts mii	nimu	ım level;
	(2)	Only non-sa	impli	ng error.						
	(3)	Total of sam	pling	g and non-sa	amp	ling er	rors.			
	(4)	Neither sam	pling	nor non-sa	mpl	ing er	ror.			
63,	Rea	d the following	ng sta	atements ca	refu	lly:				
	S ₁ :	Systematic probabilistic	sam	pling is par	rtly	prob	abilistic	and	part	ly non-
	S ₂ :	Systematic s periodic feat	ampl ure i:	ing provides n the list of	unt unit	siased s.	estimate	s if th	ere a	re some
	Cho	ose the corre	ct an	iswer from t	he f	ollowii	ng:			
	(1)	Both S_1 and			(2)		true but	S. is	false	
	(3)				(4)		S ₁ and S			
							1. Market 20	2		508.
				20						

60. In a two way classification with one observation per cell, there are 4

- 64. Neyman-Pearson fundamental lemma gives the most powerful test for:
 - (1) Simple null hypothesis against composite alternative hypothesis.
 - (2) Composite null hypothesis against Simple alternative hypothesis.
 - (3) Simple null hypothesis against simple alternative hypothesis.
 - (4) Composite null hypothesis against composite alternative hypothesis.
- 65. The ratio method of estimation provides more efficient estimator than ordinary mean when samples are drawn by using the method of simple random sampling without replacement provided:
 - The regression of main characteristics on auxiliary characteristics should be linear and it must pass through origin.
 - (2) The regression of main characteristics on auxiliary characteristics should be linear but it may not pass through origin.
 - (3) The regression of main characteristics on auxiliary characteristics may be non linear but it should pass through origin.
 - (4) The regression of main characteristics on auxiliary characteristics may not be linear and may not pass through origin
- 66. Let p, C_x and C_y denote the correlation coefficient, coefficient of variation of auxiliary characteristics and coefficient of variation of main characteristics respectively. Product moment correlation is always more efficient than sample mean if
 - (1) $2 p C_y > C_x$ (2) $2 p C_x > C_y$ (3) $2 p C_y < -C_x$ (4) $2 p C_x < -C_y$

21 P.T.O.

67	. Ap	opulatio	n is divi	ded into thr	ee str	ata who:	se sizes are	24 36 an	od 48
	103	hecrively	. II we w	ash to draw	a sai	mple of s	ize 18 usin	a proporti	ional
	allo	cation ti	ie numl	per of units	to be	drawn f	rom third :	stratum is	iornen i
	(1)	4	(2)			8	(4)		
		2.0							
68	. A L	atin Squ							
	(1)	Comple	te two w	ay layout.	(2)	Incomp	plete two u	ay layout	
	(3)	Comple	te three	way layout	. (4)		olete three		
69.	In a	бхб Гат	n Souar	e Dasian	:-1		2		
	and	treatme	nt degra	re Design w es of freedo	m or	o missin	g observati	ons, the e	rror
		18, 3							
	(-)	10, 0	(2)	18, 5	(3)	20, 3	(4)	20, 5	
7 0.	The	following	g is the la	ayout of one	repli	cate of a	2 ³ - factoria	d experim	ent:
	Bloc		(1)	b	ac	abc		(-)	
	Bloc	k 2	a	ab	c	be			
	The	interacti	on confe	unded abo	ve is				
	{1 }	AB	(2)	AC	(3)	ВС	(4)	ABC	
71.	The	response	s in a fa	actorial exp	erime	nt with t	factors A a	nd R each	
	two]	levels wit	h three	replication:	s are	as follow	S fin usual	notation	ı atı
	[1] =	18,	[a] =				[ab] = 30.	HOTALIOIR	s) :
	The :	sum of se	quare di	ue to intera			taol 50.		
	(1) 6				(2)	4			
	(3) 3	3				None of	abovo		
					1-17	HOHE UI	apove.		
				2:	2				

72. It is proposed to test the null hypothesis H_0 : ? = 2 against the alternative hypothesis H_1 : ? = 1 on the basis of a single observation X from the population having density function $f(x \mid ?) = ? \exp(-x ?)$ for x>0 and ?>0. If the critical region is X>1, the probability of committing Type-

(1) e^{-2}

(2) e^2 (3) e^2-1 (4) $(e^2-1)^{-1}$

73. When we are sampling from a normal population with unknown mean μ and unknown variance σ^{2} , which of the following is a simple hypothesis?

(1) H_0 : $\mu = 10$.

(2) H_0 : $\mu = 20$, $\sigma^2 = 4$

(3) H_0 : $\sigma^2 = 4$.

(4) All the three mentioned above.

74. The Cramer-Rao lower bound for the unbiased estimator of q based on a sample of size n drawn from a population having probability density function:

 $f(x \mid \gamma) = [p\{1+(x-\gamma)^2\}]^{-1} \text{ for } -\infty < x < \infty \text{ and } -\infty < \gamma < \infty; \text{ is}$

(1) $\frac{9}{n}$ (2) $\frac{29}{n}$ (3) $\frac{1}{n}$ (4) $\frac{2}{n}$

75. Let $\bar{\chi}$ denotes the sample mean of a random sample of size n drawn from normal population N (μ , σ^2). The INCONSISTENT estimator of μ is:

(1) $\bar{X} + \frac{1}{5n}$

 $(2) \quad \frac{n\bar{X}+10}{n+50}$

(3) $\frac{4n^2\overline{X}+101n+71}{4n^2+819n-750}$

 $(4) \quad \frac{7n^2\overline{X} + 100n + 747}{91n^2 + 18n - 175}$

- 76. For a Binomial distribution B (X | 20, p), the variance cannot exceed
 - (1) 5.

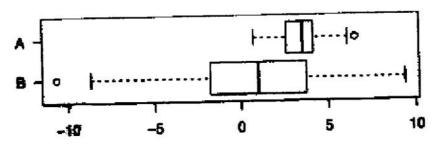
(2) 10.

(3) 20.

- (4) Nothing definite can be said.
- 77. X is a standard normal variable. Define:

$$Y = \begin{cases} X & \text{if } |X| \le 1 \\ -X & \text{if } |X| > 1 \end{cases}$$

Then the distribution of Y is:


- (1) Uniform over (0, 1)
- (2) Uniform over (-1, 1)
- (3) Standard normal
- (4) Normal but other than standard normal
- **78.** A random variable X has mean 3 and variance 2. Then P $(l \le X \le 5)$ will be:
 - (1) Less than 1/4
- (2) between $\frac{1}{4}$ an $\frac{1}{2}$
- (3) between $\frac{1}{2}$ and $\frac{3}{4}$ (4) greater than $\frac{3}{4}$
- **79.** A and B are two events with $A \subset B$ and P(B) < 1. If $p_1 = P(A^c \cup B^c)$, p_2 = P ($A^c \cap B^c$) and p_3 = P (A^c/B^c) then :
 - (1) $p_1 \le p_2 \le p_3$

(2) $p_1 \le p_3 \le p_2$

(3) $p_2 \le p_1 \le p_3$

(4) $p_2 \le p_3 \le p_1$

- 80. For a political science class, it is required to get opinion on free primary education of members of a particular party from a town. The town is divided into 17 blocks, each with similar socio-economic status distribution and other diversities. Rather than trying to obtain a list of all members of that party of the town. It is decided to select 3 blocks at random, using simple random sampling without replacement. For selected blocks, the list of all current members of the party will be collected from the block office of the party. Then the opinion on free primary education of the members was collected. What kind of design has been used above?
 - (1) simple random sampling (2) stratified sampling
 - (3) systematic sampling
- (4) cluster sampling
- 81. Two distributions (A and B) are shown on the box plot below. Which of the following statements is not supported by the plot?

- (1) Both distributions are unimodal.
- (2) Median of A is higher than median of B.
- (3) Both distributions are roughly symmetric.
- (4) B is more variable than A.
- 82. What is the objective function in linear programming problems?
 - (1) A constraint for available resource.
 - (2) A set of linear conditions in the variable resources.
 - (3) A linear function in the variable resources to be optimized.
 - (4) Any convex function of the variables to be optimized.

83. Maximize z = 2 x + 7 y subject to

$$3x - 2y < = 1$$

$$-x + 3y > = -1$$

for non-negative x and y. Which of the following points are feasible: A(0,0), B(1,1), C(2,2)?

(1) A and B only

(2) A and C only

(3) B and C only

(4) A, B and C.

84. Let a random variable X assume the values 0 and 1 with probabilities ? and (1-?) respectively, $\frac{1}{2} \le ? \le 1$. Then, what is the maximum likelihood estimator of ? on the basis of a single observation X?

- $\{1\} \quad \{1 + X\}$
- (2) (2-X)/2 (3) (2+X)/2 (4) (1-X)

85. In randomized block design with k treatments and two blocks with mean B1 and B2, which one of the following is the correct sum of the squares due to blocks?

(1) $(B_1 - B_2)^2/k$

- (2) $(B_1 B_2)^2/2k$
- (3) $K(B_1 B_2)^2/2$
- (4) $(B_1 B_2)^2/2$

86. Given the ultimate class frequencies (AB) = 250, (AB) = 120, (aB) = 200and $(a \beta) = 70$, then (a) and (β) are

(1) 450 and 370

(2) 370 and 450

(3) 270 and 190

(4) 190 and 270.

- 87. Cluster sampling is better than the simple random sampling if the intra- class correlation coefficient is:
 - (1) Positive
- (2) Negative (3) One
- (4) Zero.

Questions 88 to 90 refer to the following research situation :

A researcher who wanted to determine the benefits of using a new beginning algebra study technique obtained permission from the school of a district to select students. The researcher prepared a list of all beginning algebra students of that school and selected 50 out of them at random. The researcher divided the students randomly into two groups each consisting of 25 students. One group participated in the new study program and the other group was trained through the traditional study techniques.

- 88. The most likely target population in this study is:
 - (1) Algebra students of the district to which the school belong.
 - (2) All algebra students of that school only.
 - (3) All algebra students.
 - (4) Only the 25 students who learned the new study techniques.
- 89. The method of sampling used in the study is:

 - (1) Simple random sampling. (2) Stratified random sampling.
 - (3) Cluster sampling.
- (4) Convenience sampling
- 90. The greatest weakness of this study is:
 - (1) The divsion of the sample into two groups of 25.
 - (2) The use of only 50 students in the sample.
 - (3) The use of students from only one school.
 - (4) The use of only two different study techniques.

91	. If a	a series, y, follows a random walk, what is the optimal one-step ead forecast of y ?
	(1)	The cult value of y
	(2)	Zero
	(3)	One
	(4)	The average value of y over the in-sample period
92.	Wh 50	nich of the following behaviors will be exhibited by the data for last years of yearly average price of wheat?
	(1)	Trend only
	(2)	Cyclic variation only
	(3)	Trend and cycle variation
	(4)	Trend, cyclic and random variation, ariation.
93.	(1)	(2) I divided by the number of periods
	(3)	0.5 (4) 1.0
94.	uic	percent of variation in the dependent variable that is explained by regression eqution (independent variable) is measured by the
	(1)	Mean absolute deviation (2) Slope
	(3)	Coefficient of determination (4) Correlation coefficient
95.	The	ratio of a new price to the base year price is called the :
	(1)	Price decrease (2) Price relative
	(3)	Price increase (4) Price absolute
		20
		28

96.	A si	mple aggregate price index :		
		Ignores relative quantities		
	(2)	Considers relative quantities		
		Compares absolute prices to	abso	olute quantities
	(3)	Compares relative quantities		
	(4)	Compares relative quantities	20 1	
0.7	TL a	Laspeyres and Paasche index	are	examples of :
97.		Aggregate index numbers	(2)	Weighted price index only
	(1)			Weighted quantity index only
	(3)	Weighten index framoers	• 1	
		c	e Do	
98.	Inι	usual notations, the formula	S P _a Q	× 100 is used to calculate:
		The Laspeyres price index		
	(1)	The Laspeyres price much	(4)	The Laspeyres quantity index
	(3)	The Paasene quantity index	(.)	
00	۸ -	caling factor is used to :		
99.		Change a simple index to a	weig	hted index
	(1) (2)	Change an aggregate index t	to a	weighted index
	(3)			
	(4)		oa!	Laspeyres index.
10	O. If t	he Net reproduction rate is ed	qual	to 'one' then the population will
	ha	ve a tendency:		
	(1)	To decrease in size	(2)	To increase in size
	(3)	To remain constant in size	(4)	To have the same age structure.
			000000000000000000000000000000000000000	1 of copresenting the
10	1. W	hich of the following is the m	iost ed r	popular way of representing the
		pulation structure of a specifi	,cu i	(2) Divided bar chart
	0.70	Vertical bar chart	141	Population histogram
	(3) Population pyramid	(-1)	2 - F
			29	P.T.O.
			47°	

102. Records of births, deaths, marriages and divorces, gathered through a registration system maintained by governmental units, are referred to as:

(1) A census.

(2) Demographic data.

(3) Vital statistics.

(4) Sociological data.

103. Which one of the following is correct (notations carry their usual meanings) ?

(1) $d_x = l_x + l_{x+1}$

 $(2) \quad \mathbf{d}_{\mathbf{x}} = \mathbf{q}_{\mathbf{x}} \, \mathbf{l}_{\mathbf{x}}$

(3) $d_x = q_{x+1} + l_x$

(4) $d_x = q_x + l_{x+1}$

104. Which one of the following is correct (notations carry their usual meanings)?

(1) $L_x = l_{x+1/2}$

(2) $L_x = l_{x+1} / 2 + l_x$

(3) $L_x = 1/2 (l_x - l_{x+1})$ (4) $L_x = \sqrt{l_x l_{x+1}}$

105. Age specific fertility curve is:

(1) Slightly positively skewed (2) Highly positively skewed

(3) Slightly negatively skewed (4) Highly negatively skewed

106. The extent to which mothers produce female infants who survive to replace them is measure by:

(1) Total fertility rate

(2) Net reproduction rate

(3) Gross reproduction rate

(4) Crude birth rate.

- 107. The Gross reproduction rate (GRR):
 - (1) Provides lower limit to Net Reproduction rate (NRR).

(2) Provides upper limit to NRR.

(3) Has no relationship with NRR.

(4) Does not consider the prevailing mortality.

108		transition probal	bility matrix	P of	a Markov cha	in sh	ould be:					
	A : A square matrix.											
	B: A matrix with non-negative elements.											
	C:S	C: Such that the row sum of the matrix is unity.										
	Choo	ose the best answ	ver from the	folic	wing codes:							
	The matrix P should posses											
		Only A and B.	÷	(2)	Only A and C							
		Only Band C.		(4)	A, B and C; a	ill the	three.					
	(0)	Only Band of		1990 15								
	109. The nature of the curve, when price elasticity of demand is constant,											
109	will be:											
				101	n bala	1.11	Hyperbola					
	(1)	Linear (2)	Quadratic	(3)	Parabola	(+)	Hypernois	•				
110	. If du	ial has an unboi	ınded soluti	on, p	orimal has:							
		No feasible solu		(2)	Unbounded	soluti	ion.					
		Feasible solutio		8 180	(4) None of	the a	bove.					
	(3)	reasible solution			T also de anticipate anno							
				1.1	is solled th	. A.						
111	.The	value of the inde	e x is caned u	IC .	A							
	(1)	Entry (2)	Argument	(3)	Depositary	(4)	Amputua	e				
	ve											
112. A relation between the differences of an unknown function at a number												
114	of v	alues of the argu	ment is kno	wn a	ts:							
		Differential equ		(2)	Partial differ	entia	l equation.					
	-				Linear equa							
	(3)	Difference equa	COII.	1.1	Zilledi							
			2000 PG		1' '-1		orn 2					
113	3. Wh	ich number syst			ern digital coi	npuo	ersr					
	(1)	Binary (2)	Decimal	(3)	Hexadecima	1 (4)	Octal					
	. ,	0000 0000000 (000000000000000000000000										
	• 5°	st computer was	programme	d us	ing:							
11.												
114						iguas	(e					
114	(1)	High level lang	uage	(2)	Machine lar		ge.					
114	(1)		uage	(2)			ţe					
114	(1)	High level lang	uage uage	(2) (4)	Machine lar			T ()				
114	(1)	High level lang	uage uage	(2)	Machine lar			r.O.				

11	115. How many types of memory is used by computers:									
		2	(2)			(3)			(4)	5
11	6. Th	e language ι	ısed	for complex	scien	tific c	omputa	tion	is ·	
	{1}	Cobol			(2)	Fort				
	(3)	HTML			20 SES		e of the	bove		
117	pro	graphic representations	esent roble	ation of the	sequ	ence	of steps	s nee	ded to	solve
	(1)	Flowchart			(2)	Algo.	rithm			
	(3)	Program G	raph		(4)	None	the abo	ove		
	(1)	ich of follow And ivert (10001	(2)	Or	(3)	Not		al sys (4)	stem ? Nanc	
	(1)	(35)10		(37) ₁₀				(4)	(32)	0
120	(1)	en you copy Clipboard	or ct (2)	it informatio Clipart			aced in : erboard		Hard	disk
121	.The	acronym Di	змѕ	stands for :	:					
	(1) (2) (3) (4)	Data Base I Data binder Data Base I Decimal and	Mana r M ar neth	ngement Sys nagement Sy odology Sys	tem ystem tem		tem			
122	Eaci (a) C	h Box in Exc Cell	el Sp (b) T		is call (c) Re			(d) B	Box	

a

```
123. Which of following is not file extension of FORTRAN file?
                                           (3) .177
                                                         (4) .cpp
                     (2) .f
    (1) .for
124. What is syntax error in following C Program?
     /* Program 1.2 Your Second C Program */
     #include<stdio.h>
     int main(void)
     printf("If at first you don't succeed, try, try, try again!")
     retirm 0;
     (1) : is missing (2) ; is missing (3) , is missing (4) "is missing
125. Which of the following keys is not used in Fortran?
                                                             (\mathbf{d}) ,
                                                          (c)
                           (b) ()
     (a) *
 126. What will be the output of the following C Program?
          #include <stdio.h>
           main ()
              int n = 0, m = 0;
              if (n > 0)
                 if (m > 0)
                    printf ("True");
           else
              printf ("False");
           }
                                         (2) False
       (1) True
                                        (4) Run time error
       (3) No Output
```

127.W	hich of Follov	ving	is not an obi	ect o	riented Progra	mm	inat .			
(1) C	(2)	C++	(3)	JAVA	(4)				
				(-)	OH I	(**)	К			
128.W	hich of follow	ing i	s not a Stati	stica	l Parkage 2					
(1)			SAS	(3)	STATA	(+)	c			
				1-2	manna.	(-1)	C			
129. W	hich of Follow	ing i	s not and op	erat	ing System ?					
(1)	DOS	(2)	LINUX		Windows	141	ALGOL			
						81 15				
130.In	which genera	tion	of computer	deve	lopment, "mic	ro pr	ocessor chip"			
(1)	F	respe	a combatten	τ?	72 M50	. I				
(1)	1	(2)	2^{na}	(3)	3rd	(4)	4 ¹ h			
131 W/H	et is "Vince :									
	131. What is "KIPS" in computer terminology?									
200	(1) Knowledge Information Processor System(2) Knowledge Information Protection System									
(2)	Knowledge I	ntori	mation Prote	ection	n System					
(3)	Knowledge I	nfori	mation Proce	essin	g System					
(4)	Knowledge I	ntro	ducing Prote	ction	System					
132 Wh	ich of the fall		an 4 00 - 20 - 200 - 200-20							
(1)	Conversion)Wing	g is not the v	work	of "output int	erfac	es" ?			
87 8 7 .	Conversion ()) the	coded resu	lts to	human acce	ptabl	e form,			
(2)	Smitting of th	ie me	emory from l	RAM	to CPU.					
,(3)	Supply of the	e con	verted resul	ts to	the outside w	ord.				
	(4) Acceptance of the results produced by the computers which									
1101	in coded form	L					State (Control of the Control of the			
133 Who	it is the		pre par area							
(1)	it is the corre			(IAF) ₁₆					
	(217) ₁₀		2) (431) ₁₀							
ری	(437) ₁₀	(4	4) (430) ₁₀							
			34							

134. What is "ASCII"?									
(1)	American Scientific code for International Institute								
(2)	American Standard code for International Information								
(3)	American Stan	American Standard code for International Interchange							
(4)	American Stan	dard code for	Info	mation Inter	chang	e			
	ich of the follow	ing is the vali	d "in (3)	teger constar \$125	nt" in I (4)	FORTRAN ? 123,45			
***	nich of the follow	ing is invalid 0025	"real (3)	constant" in 58,48.34	FORT (4)	'RAN ? 1.5			
	FORTRAN what .46x10 ⁶ (2)	will be the co 45.7x10 ³	rrect (3)	representati .45E6	on for (4)	457000 ? .45E-6			
	hich of the follow 146.86E+27	ring is valid it (2) 125*E	n FO) 9	RTRAN ? (3) +142.7	E (4)	123,45E-6			
139. ln (1	FORTRAN which BAT2 (2)		ving i (3)	is invalid "Int MAS2	eger v (4)	ariable" ? KITE4			
	hich of the follow PRAVEEN (2		real (3)	variable" in F LION	ORTR (4)	C			
141. What is the correct exprAssion for, $\log_e \sqrt{\frac{x}{yz}}$ (1) LOG(SQRT(X/Y*Z))) (2) LOG(SQRT(X/Y**Z))) (3) ALOG(SQRT(X/(Y*Z))) (4) ALOG(SQRT(X/(Y**Z)))									
			35			Р.Т.	O		

142. In C which symbol is used for logical operator NOT?										
) 1		\$		&		Z			
143. Which of the following is the output function in C?										
					Printf("").		Scanf("");			
144 . Nu	mber of keyv	vords	s available ir	n C a	re :					
	26		36	(3)		(4)	40			
145. Which is not a keyword in C language?										
(1)	double	(2)	if		(3) void	(4)	type			
146 . In 1	146. In FORTRAN the symbol b ☐ is used for ?									
(1)	Blank space									
(2)	NOT operate	or								
(3)	Delete command									
(4)	Showing any interruption during the programe									
147. FORTRAN statement are written starting from the :										
	6 th column t				5 th column to	colur	nn 73			
(3)	7 th column to	o coli	umn 72		7 th column to 6					

148.	The	product of t	wo b	inary numb	ers (1011) and (100)1) is	S:
	(1)	1100011	(2)	1010100	(3)	1011001	(4)	100110
149.	Spe	cial characte	ers in	FORTRAN	77 ar	re:		
	(a) +	.	(b) \$		(c):	(d) %	(e) b	olank
	Cho	ose your an	swer	from the fol	llowir	ng codes :		
	(1)	(a), (b), (c),	(d)		(2)	(a), (c), (d), (e)		
	(3)	(a), (b), (c),	(e)		(4)	(b), (c), (d), (e)		
150.	The	default MS	Exce.	l file extensi	ion is	:		
	(1)	.XLR	(2)	.EXE	(3)	.EXL	(4)	.XLS

37 800

ROUGH WORK एक कार्य

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ यर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं हैं। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पृणी
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफोफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पैन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुत्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टिधों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुवित साधन का प्रयोग भाना जायेगा।
- 8. ब्रश्न-धुस्तिका में प्राप्तेक प्रश्न के चार वैकल्पिक इत्तर दिये गये हैं। प्राप्तेक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान हैं कि एक बार स्वाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं हेना खाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/कां, भागी होगा/होगी।